
Software Engineering Integration For Flexible Automation Systems

AutomationML Models (in EMF and EA)
for Modelers and Software Developers

Emanuel Mätzler
Institute of Software Technology and Interactive Systems

Vienna University of Technology

Christian Doppler Laboratory

 Introduction
 Modeling Language Engineering

From Data Exchange Format to Modeling Language
– Background on Modeling Language Engineering
– Interactive session with Eclipse Modeling Framework

 Model Transformation Engineering
From AutomationML to Enterprise Architect (EA)
– Background on Model Transformations
– Interactive session with the EA AML Engineer Plugin

 Conclusions

Outline

Introduction

 Identified needs
a. A large number of heterogeneous models is involved in systems engineering

 Need for process support

b. A wide variety of models in systems engineering come from different disciplines
 Need for management
 Need for customized integration for concrete application scenarios
 Vision: encompassing various viewpoints to get a better understanding

 At TU Wien we have the expertise
a. To develop software tools the model driven way (AutomationML Hub example)
b. To deal with a large number of heterogeneous software and systems models

Model Exchange: AML as Common Format

 AutomationML (AML)

 Emerging standard for tool data
exchange

 Foundation for harmonizing
engineering data coming from a
heterogeneous tool network by means
of a unified format and data model

= domain = tool = doc

overall system design

mechanical
engineering

electrical
engineering

software
engineering

Industry 4.0

How to get from Data to Models?

Data Exchange vs. Modeling Languages

Anatomy of modeling languages

6

 Although languages have, in general, divergent orientations and application
fields, they still share a common language definition structure

Semantics

Abstract Syntax

Serialization Syntax Concrete Syntax

Formal languages

Meaning of the
language elementsLanguage elements,

i.e., grammar

Notation of the
language elements

Persistency and
model exchange

Anatomy of modeling languages

7

 Semantics: Defines the meaning of the language
concepts
 How language concepts are interpreted

 Abstract syntax: Defines the language concepts and how
these concepts can be combined (~ grammar)
 However, it does not define the notation or meaning of the

concepts
 Concrete syntax: Notation to illustrate the language

concepts intuitively
 2 ways: textual or graphical (or mixture)

 Serialization syntax: For persistent storage and model
exchange between tools
 XML, proprietary format, …

 AutomationML family is defined by a set of XML Schemas
 Systematic metamodel creation process

– Step 1: Generative approach to produce initial Ecore-based metamodel
– Step 2: Refactorings for improving language design

 Resulting metamodels
– are complete and correct with respect to XML Schemas
– allow to import/export data from/to XML data

 A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, W. Retschitzegger: Bridging WebML to Model-
Driven Engineering: From DTDs to MOF. IET Software 1(3), 2007.

AML Metamodel

AML Model

AML XSDs

conformsTo

EcoreXSD

AML XML

Correspondences

conformsTo

conformsTo

conformsTo

Metamodel
Transformation

implies

implies

Model
Transformation

Language Engineering via Metamodeling

Language Engineering via Metamodeling
First Interactive session

 Reqirements
– Eclipse Modeling Framework (https://eclipse.org/modeling/emf/)
– AutomationML Metamodel (https://github.com/amlModeling)
– Xtext for textual concrete syntax (https://eclipse.org/Xtext)
– AmlText

(https://github.com/patrickneubauer/XMLText/tree/master/AUTOMATIONML)

AML Metamodel

AML Model

AML XSDs

conformsTo

EcoreXSD

AML XML

Correspondences

conformsTo

conformsTo

conformsTo

Metamodel
Transformation

implies

implies

Model
Transformation

conforms to

https://eclipse.org/modeling/emf/
https://github.com/amlModeling
https://eclipse.org/Xtext
https://github.com/patrickneubauer/XMLText/tree/master/AUTOMATIONML

Interactive Session (1/2)

Model Transformations
Pattern

K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), pages 621-646, 2006.

Transformation
Implementation

Model

Metamodel

Model

Metamodel

Transformation
Engine

writesreads
ex

ec
ut

es

«c
on

fo
rm

sT
o»

«c
on

fo
rm

sT
o»

Trace Model
linkslinks

writes

 SysML is a graphical modeling
language standardized by OMG for
the development of large-scale,
complex, and multi-disciplinary
systems in a model-based
approach.

 It provides modeling concepts for
representing the requirements,
structure, and behavior of a
systems.

 Captures the overall design of a
system on a high level of abstraction
and traces this design to the
discipline-specific models

…

Model Transformations: AML and SysML
Two Unrelated Modeling Standards

 Additions to UML for
Requirements and Properties
 Requirement: SysML provides

modeling constructs to represent
text-based requirements and
relate them to other modeling
elements.

 Constraints and Parametric
Diagram (constraint analysis)

 Customization of UML for
structural modeling through
Classes and Composite
Structures
 Block derives from

CompositeStructures::Class

UML

SysML
UML4
SysML

Requirements
Properties

Deployments
Interactions Classes

CompositeStructures
Activities
StateMachines

Model Transformations: AML and SysML
SysML in a Nutshell

Model Exchange: AML as Common Format
Case Study: Six Axes Robot

Class Diagram(s)
Composite Structure Diagram(s)

Block Definition Diagrams (BDs)
Internal Block Diagrams (IBDs)

Tree-based view

«represented by»

 Commonalities and differences between the structural modeling
sublanguages of AML (CAEX) and SysML (Block Diagrams)

 AML metamodel and profiles for UML and SysML
 Transformations between AML and SysML (UML/SysML already available)

Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

Block Definition Diagram AML Editor Tree

Transformation Engine

Rule
«block»

RuleRule

Internal
Element

MDG

built-in

Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

AML Editor Tree

MDG4

Export

Import

Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

AML Editor Tree

MDG4

MDG4

A
ut

om
at

io
nM

L
fo

r
Im

po
rt/

E
xp

or
t

Model Transformations: AML, SysML and UML
Second Interactive session: From AutomationML to EA and Back again

 Reqirements
– Enterprise Architect (http://www.sparxsystems.de/uml/download-trial/)
– AML Plugin for EA (Prototype: http://www.sysml4industry.org/?page_id=266)

http://www.sparxsystems.de/uml/download-trial
http://www.sysml4industry.org/?page_id=266

Interactive Session (2/2)

 Model-Driven Engineering is beneficial to
 Represent modeling languages
 Derive tool support
 Bridging different languages
 Providing different surface languages for one abstract language

 Resulting modeling tools are
 Open and extensible
 Model management support is available out-of-the-box based on common

metamodeling language
 Modeling tools are usable in combination based on model exchange
 Modeling tools allow for a mixture of modeling languages leading to multi-

paradigm modeling approaches

 Next steps
 Mappings between the behavioral modeling parts of AML PLCopen XML

and SysML Activity Diagrams and State Machines
 Generative usage of AML models by defining code generator chains
 Analytical usage of AML models by transforming them to formal domains

Conclusions and Future Work

	Software Engineering Integration For Flexible Automation Systems���AutomationML Models (in EMF and EA)�for Modelers and Software Developers
	Outline
	Introduction
	Model Exchange: AML as Common Format
	How to get from Data to Models?
	Anatomy of modeling languages
	Anatomy of modeling languages
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Model Transformations
	Foliennummer 12
	Foliennummer 13
	Model Exchange: AML as Common Format
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	backup slides
	Summary
	Model Exchange: AML as Common Format
	Foliennummer 31
	Case Study: AutomationML
	3. Change Types on Prototypes and their Impact on Prototype/Clone Consistency
	3. Change Types on Prototypes and Their Impact on Prototype/Clone Consistency
	3. Change Types on Prototypes and Their Impact on Prototype/Clone Consistency
	4. Repair Operations to re-establish Prototype/Clone Consistency
	4. Repair Operations to Re-Establish Prototype/Clone Consistency
	4. Repair Operations to Re-Establish Prototype/Clone Consistency
	Case Study: AutomationML
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52

