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 Introduction
 Modeling Language Engineering

From Data Exchange Format to Modeling Language
– Background on Modeling Language Engineering
– Interactive session with Eclipse Modeling Framework

 Model Transformation Engineering
From AutomationML to Enterprise Architect (EA)
– Background on Model Transformations
– Interactive session with the EA AML Engineer Plugin

 Conclusions
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Introduction

 Identified needs
a. A large number of heterogeneous models is involved in systems engineering

 Need for process support

b. A wide variety of models in systems engineering come from different disciplines 
 Need for management
 Need for customized integration for concrete application scenarios
 Vision: encompassing various viewpoints to get a better understanding 

 At TU Wien we have the expertise 
a. To develop software tools the model driven way (AutomationML Hub example)
b. To deal with a large number of heterogeneous software and systems models



Model Exchange: AML as Common Format

 AutomationML (AML) 

 Emerging standard for tool data
exchange 

 Foundation for harmonizing 
engineering data coming from a 
heterogeneous tool network by means 
of a unified format and data model
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How to get from Data to Models?

Data Exchange vs. Modeling Languages



Anatomy of modeling languages
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 Although languages have, in general, divergent orientations and application 
fields, they still share a common language definition structure

Semantics

Abstract Syntax

Serialization Syntax Concrete Syntax

Formal languages

Meaning of the 
language elementsLanguage elements, 

i.e., grammar

Notation of the 
language elements

Persistency and 
model exchange



Anatomy of modeling languages
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 Semantics: Defines the meaning of the language 
concepts
 How language concepts are interpreted

 Abstract syntax: Defines the language concepts and how 
these concepts can be combined  (~ grammar)
 However, it does not define the notation or meaning of the 

concepts
 Concrete syntax: Notation to illustrate the language 

concepts intuitively
 2 ways: textual or graphical (or mixture)

 Serialization syntax: For persistent storage and model 
exchange between tools
 XML, proprietary format, …



 AutomationML family is defined by a set of XML Schemas
 Systematic metamodel creation process

– Step 1: Generative approach to produce initial Ecore-based metamodel
– Step 2: Refactorings for improving language design

 Resulting metamodels
– are complete and correct with respect to XML Schemas
– allow to import/export data from/to XML data

 A. Schauerhuber, M. Wimmer, E. Kapsammer, W. Schwinger, W. Retschitzegger: Bridging WebML to Model-
Driven Engineering: From DTDs to MOF. IET Software 1(3), 2007.
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Language Engineering via Metamodeling
First Interactive session

 Reqirements
– Eclipse Modeling Framework (https://eclipse.org/modeling/emf/)
– AutomationML Metamodel (https://github.com/amlModeling)
– Xtext for textual concrete syntax (https://eclipse.org/Xtext)
– AmlText

(https://github.com/patrickneubauer/XMLText/tree/master/AUTOMATIONML)
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https://eclipse.org/modeling/emf/
https://github.com/amlModeling
https://eclipse.org/Xtext
https://github.com/patrickneubauer/XMLText/tree/master/AUTOMATIONML


Interactive Session (1/2)



Model Transformations
Pattern

K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), pages 621-646, 2006.
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 SysML is a graphical modeling 
language standardized by OMG for 
the development of large-scale, 
complex, and multi-disciplinary 
systems in a model-based 
approach. 

 It provides modeling concepts for 
representing the requirements, 
structure, and behavior of a 
systems.

 Captures the overall design of a 
system on a high level of abstraction 
and traces this design to the 
discipline-specific models

…

Model Transformations: AML and SysML
Two Unrelated Modeling Standards



 Additions to UML for 
Requirements and Properties
 Requirement: SysML provides 

modeling constructs to represent 
text-based requirements and 
relate them to other modeling 
elements.

 Constraints and Parametric 
Diagram (constraint analysis)

 Customization of UML for 
structural modeling through 
Classes and Composite 
Structures
 Block derives from 

CompositeStructures::Class

UML

SysML
UML4
SysML

Requirements
Properties

Deployments
Interactions Classes

CompositeStructures
Activities
StateMachines

Model Transformations: AML and SysML
SysML in a Nutshell 



Model Exchange: AML as Common Format
Case Study: Six Axes Robot



Class Diagram(s)
Composite Structure Diagram(s)

Block Definition Diagrams (BDs)
Internal Block Diagrams (IBDs)

Tree-based view

«represented by»

 Commonalities and differences between the structural modeling 
sublanguages of AML (CAEX) and SysML (Block Diagrams) 

 AML metamodel and profiles for UML and SysML
 Transformations between AML and SysML (UML/SysML already available)

Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example



Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example
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Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

AML Editor Tree
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Model Transformations: AML and SysML
From AutomationML to Enterprise Architect and Back again: Example

AML Editor Tree

MDG4
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Model Transformations: AML, SysML and UML
Second Interactive session: From AutomationML to EA and Back again

 Reqirements
– Enterprise Architect (http://www.sparxsystems.de/uml/download-trial/)
– AML Plugin for EA (Prototype: http://www.sysml4industry.org/?page_id=266)

http://www.sparxsystems.de/uml/download-trial
http://www.sysml4industry.org/?page_id=266
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 Model-Driven Engineering is beneficial to
 Represent modeling languages
 Derive tool support
 Bridging different languages
 Providing different surface languages for one abstract language

 Resulting modeling tools are 
 Open and extensible 
 Model management support is available out-of-the-box based on common 

metamodeling language
 Modeling tools are usable in combination based on model exchange
 Modeling tools allow for a mixture of modeling languages leading to multi-

paradigm modeling approaches 

 Next steps
 Mappings between the behavioral modeling parts of AML PLCopen XML 

and SysML Activity Diagrams and State Machines
 Generative usage of AML models by defining code generator chains
 Analytical usage of AML models by transforming them to formal domains

Conclusions and Future Work
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